
:.]
"

l

' 1

F~A, ~"'i 4-'f ,'11.
REPORT NO. FAA-Rrr-77-177, II

SINGLE-CHANNEL VO ICE-RESPONSE-SYSTEM
PROGRAM DOCUMENTATION

Volume 11: Program-Design Modules

Input Output Computer Services. Inc.
689 Concord Avenue
Cambridge MA 02138

DECEMBER 1977

FINAL REPORT

DOCUMENT IS AVAILABLE TO THE U.S. PUBLIC
THROUGH THE NATIONAL TECHNICAL
INFORMATION SEAVICE, SPRINGFIELD,
VIAOIN1A 221&1

Prepared for

U,S, DEPARTMENT OF TRANSPORTATION
FEDERAL AVIATION ADMINISTRATION

Systems Research and Development Service
Washington DC 20591

RtFEJltNCE USE omr

NOTICE

This document is disseminated under the sponsorship
of the Department of Transportation in the interest
of information exchange. The United States Govern­
ment assumes no liability for its contents or use
thereof.

NOTICE

The United States Government does not endorse pro­
ducts or manufacturers. Tr1ade or manufacturers'
names appear herein solely ~eca~se they are con­
sidered essential to the object o~ this report.

. ---··· -- -- -------------------- - - ·-,-

Technical l(eport Docum~nfati~n Pagl!

1. R.-port No. 2. Coviernml!!nl At:c:r1~1cn No. 3 . R~t:1p1enf · :,,: (Qtalo~ No .

I FAA-RD-77-177, II

4, Title ar,d Svbtille 5. Reparl Date - -----·-
SINGLE-CHANNEL VOICE-RESPONSE- SYSTEM RROGRAM December 1977

DOCUMENTATION 6. P1,forming 0,9on,1.cit10r, Code:-

Volume II: Program-Design Modules
8. Performing O,gc,nization Rl'iporJ No.

7. Author1 1)

DOT-TSC-FAA-77-24,II
9. Perla,min9 Or;cmizottcn Nam~ on-d .Addre~s 10. Work Uni! Ne. (TRAISI

Computer
.. .. FA831/8109 Input Output Services, Inc.*

689 Concord Avenue II . Con1roct or Gron, No, I
Cambridge MA 02138 DOT-TSC-1107-2

13. Typ,e of Re~o,t ond Period Cove,ed

12. Sponsoring Agenoy ~•"'• and Addren Final Report U.S. Department of Transportation
Sept 1975 - Jan. 1976 Federal Aviation Administration

Systems Research and Development Service) 4. Sponsorin9 Agc-nq1 C0de

Washington DC 20591
15. S1,1pplemento1y Note• u.s. Department of Transportation

*Under Contract to: Transportation Systems Center
Kendall Square
r. .. mhri~ ,.,,. MA 0?11,?

16. Abstract -

This report documents the design and implementation of a Voice Response System
(VRS) using Adaptive Differential Pulse Code Modulation (ADPCM) voice coding.
Implemented on a Digital Equipment Corporation PDP-11/20,R this VRS system
supports a single audio output channel. Vocabulary size is limited to 900 words
or phrases. Input to the system consists of text messages or sentences in ASCII
format transmitted to the 11/20 through a 300-baud asynchronous interface. A
preliminary design for a VRS for 10 c~nnels is reported.

This is the second of three volumes. Volume I is a system description, and
Volume III is a user's guide.

'

17. Koy Wo,01 18. Di ,t,ibutian Stdteme~t

Voice Response System
DOCUMENT IS AVA_ILABLE TO THE U.S. PUBLIC

VRS THROUGH THE NATIONAL TECHNICAL

AOPCM INFORMATION SERVICE, SPRINGf'IELD,
VIRGINIA 221111

Speech Coding

19. Socurity Clauif. (of tkia ••porl) 20, Sec.,,ity CIGud, (of lhis pogo) 21. No, of P og .. 22. P,ice

Unclassified Unclassified
68

Form DOT F 1700.7 (8-72) Rept0d1>clion of completed page authorized

M
ET

R
IC

 C
O

N
V

ER
SI

O
N

FA

C
TO

R
S

A
p

,1
n

i-
ta

 C
11

ve
,1

i1
q

I■

M
11

1i
,

II
IH

S
U

Jt
l

..
=

~

-
A

,,,
,,,

 ..
 11

C
1
•
w
1
r
l
i
1
■1

t
r
o
■

M

u
ri

e
-
,
,
 ..

 ,.
,

=

h
a

ll
ll

••1

1 '•
• a

, .
.

•
■
11

;,
1,

 h

Te
 f

iM

.,...
..

-
.,..

..
...

,Y
••

-
■
-"
',
ty
 .

..

Te
 f

ia
41

s,

 ••
•

~

:;

-
IF

M
l:

T
N

Lf
llG

TN

-
~

--
~

...

m
1l

l1
,..

11
1t

.s
.

D
.M

in

<
h

H

:
=

c
,n

C

""
'1

'1
11

'1
11

M
fi

0

.4

·-·

..
-·

J_
J

,...
fl

..-

c .
.. ,

z.~

,c

an
11

m
at

..-
1o

c
m

-
;

..
1.

1
....

..
~

..
-·

ft

....
JO

C

tn
fl

ff
ll
le

rt
,

<
"'

..

-
■
m

IU
I.

..
.W

I
0

.6

.....
...

..
0

.9

-·
..

-

·-·
...

.....

'-
'

k1
la

a
e

&
e

t.
t

...
=

!:

A
II

H

AI
IE

A
-

:=
-

-
rd

l
i
Q
l
,
l
a
r
■

I
C
e
f
l
l
.
,
_
.
.
,
,
,

U
.1

1
.....

.....
.

.,.•

,,.,
...

,.N
I_

..
l.

5

s,q
ui

11
re

 i
ee

n,
,m

aw
a

em
•

~

~

,..
.....

.. ,..
. ...

1
.2

-·-
.,

;
...

-·-
0

.0
9

9C

lu
81

11
11

 l
'tW

l(
lr

!I

...
....

..
..

..
..

..
 1 .
.
 -
.

0
.4

.... .

.....
.

_,

.,
;

...
,.,

. ,.
.,...

.
0

.1

,.
_.

,.
.,

.s

.. ,
.:!

...

h
e

e
1

a
rf

f
11

0.
00

0
.z,

2.

1
--

.. ,,
..

.-
1

1
1

1
1

ln

1
.1

lq

u
.•

 1
1.,

 ..
..

..
 .
,
,

...,
-

f--
'-

.....

D
.4

--
...

-
t-

'-
~

M
A

SS
 I

--
i1

•1
I

..
-

II
A

SS
 1

-;
1

•1
1

=

!:!

=

'
·-

D
.l

m

.._
..

..
""

·
n

g
. .
..

 ,
0

..
ti.

ii .
.
.
.
.
.

2
.2

-
..

1•

-·
e .

 .s

.li
il,

kl
g

l .
.
.

...
=

tm

1M
at

1C
m

11
1,

1
1.

1

--
--·

a.

I
-·

-
==

-
_

,.
,

~

!:

V
D

lU
II

E

~

VO
LU

M
E

..
-

•
I

n
u

lh
li
..

,_

O
.IQ

f
h

u
d

~

...
, ..

-
I

m
tl

li
li
u

n
,

m
l

..
"'•

11
11

,..
.-.

.
m

l
.

-
'

,,.,
.

2.
1

-
.,,,.

..
.... _

 . 1
5

'
.....

.
,_,

.
-

..
""

"
.....

...
~

-
••

lh
li

..
,.

_

..
 1

..
-

D
.2

4
t,

 .
.
.

I
..

I
li

ll
lJ

a
u

.
., ...

::

C

·-
m

'

--
1,

1.
,s

. '

~

tn
c
 l
l'
ll
lt

.l

3
6

..

p1
A

IS
I

a.
,1

-

...
--

~

.. ,..
,.

'
C

Y
D

t(
 "

-t
9

H
i

1
.l

~

-
G

-"
"

=

-
D
■
I

.., _
_

1
.1

,,_

'

...
c
-.

C
 t

..
-:

I.

O
J

c:
ub

11
C

m
et

.r
1

.. ,
-

~

c~
,_

.
0

.1
1

cu

b
te

 .
..

..
..

...

w

-
fE

II
P

H
A

T
U

II
E

 j
■■
1
n
f

-
TU

IP
EI

IA
TU

II
I

(H
K

1!

..
•c

c.,

 •. -.
..

'"
-

-·

.,
.,

F .
.
.
.
.
 it

II
.I

t I
•
-

C•
t••

11
•

•c

-
-
:
I
l
l

-
-

-
_,

.,
.

.....
.....

..
-

~

••
!Z

I
. ,

)
2

.....

...

..
•

I
~

I
I
i ":'

 J I
I

-
~

I
b: •

~
O

 I
j

I
I
~

 I
I

I'
"
:"

~

=
--

-•
o

i
-

I
-
4

0

(
-io

I

D

2
'0

I

\
•a

f

■'
a

I
tO

Q

-
~

•c

-
"

•c
:

-

PREFACE

GUIDE TO THE PROGRAM DOCUMENTATION

This volume contains:

CALLING SEQUENCES'

A brief description of the major file management and text
buffering routine is provided. The description includes the
required arguments for the subroutines, error conditions, and
a list of subroutines called by the described routine.

FLOW CHARTS

A flow chart is provided for each of the user commands avail­
able in VEDIT and RECORD. These charts assume knowledge of
system operation, as described in the user manual (Volume III).
Since copious reference is made to the listings, they should
also be consulted.

LISTINGS

The program listings are found elsewhere. A running commen­
tary is provided in addition to a short description of each
program module. An index for the listings is found in Section 3
of this volume. The first part of the index gives the program
names followed by the name of all source modules requ ired to
assemble the program. The second part gives the source module
name followed by the name of all subroutines in that module.

LINKING CONVENTION

The system linking programs can be found in the section de­
scribing the module STKBUF. The conventions used are described
as an aid to understanding the attached flow charts.

Subroutines in the VRS have two possible returns. The first is
the normal return. Execution continues after the call as nor­
mally would be expected from a subroutine retur n. The second
is called an " error" return. This return is specified by pro­
viding an address the program should continue at, should the
error return be taken.

It is important to note that the error return can mean one of
t wo things: an actual error may have occurred in the system,
such as an ~ttemp t to write the disk with the write-lock on;
or , an error return can result from a test which fail s. For
example, DCTBM is a routine to find the entry in the dictionary
which best matches the input string. If no match occurs,

iii

)'

however, the error return is ta'ken. 'I!h·is B~es :not indicate
a program error, but r-ather is •used 'be.> imdli,caibe that the
input string does not match any -entry i,n ,the clictd.onary. In
the case or making sure that a new ·entry .does .not already
exist, the error return i.s actually the ~es"ir.a:.bl-e return for
DCTBM.

The prQgram flow charts indicate the error return by an arrow
leaving the subrou_tin-e calls, •i.ch is a.a-belled "·error".
Ag$in, this always in4i-ca·bes the er'l1'0r r.e·tu-r,n as described
above. Of course, the error r.e·turn may :b-e t'he -desired return,
thus, the reader should consult the listing -o·r the calling
sequence description to det~rmine theoonc!litd.ons which lead
to the error return.

iv

r
•

u
CONTENTS

Section Page

1. INTRODUCTION 1

1.1 Hardware Env irorunen t 1
1. 2 Software Environment l

1.2.1 Vedit 1
1.2 . 2 Record l
1.2 . 3 Speak 2
1.2.4 System Subroutines 2
1.2. 5 Data Base 2

2. SOFTWARE " -
2,l 'Vedit 3
2.2 Record 15
2.3 Speak 19

Phrase Look-Ahead Algorithm 21

3. SYSTEM SUBROUTINES 26

3.1 Program Assembly module names 27
3.2 Subroutine Names 28
3.3 Subroutine Description 35

4. DATA BASE 59

File syetem Description

V

ILLUSTRATIONS

Figure

VEDIT - Main Program

Vedit Subroutines

LIST
TALK
PRINT
INSERT
SN
SYNON
ENTER
RENAME
DELETE

Record Subroutines

LISTEN
SAVE
SPEAK

3-1 POINTER SUMMARY ARROWS INDICATED DIRECTION OF
MOTION

4-1 SAMPLE FILE STRUCTURE

4-2 FILE SYSTEM PARTITION

Table

2 - 1 Sample Dictionary

TABLES

vi

Page

5

6
7
7
8
9

10
11
12
13

16
17
20

38

60

62

23

1, INTRODUCTION

This documentation describes the operation of the
programs comprising the single channel Voice Response
System (VRS) delivered under contract DOT/TSC 1107.
The descriptions include a short narrative of each
module and corresponding flow charts. The program
listings are furnished under separate cover.

1.1 HARDWARE ENVIRONMENT

The single channel VRS system requires a PDP-11/20
computer configured as shown in Figure 1. At least
12K core memory is required.

1,2 SOFTWARE ENVIRONMENT

1. 2.1

1. 2. 2

The programs described run under control of the DEC
RT-11 operating system, version 2. The single job
(SJ) monitor.is used. There are three main programs
callable from the monitor level as follows. Each
program is treated in detail in subsequent sections.

VEDIT

Program VEDIT comprises all modules required to create,
modify and update the dictionary which maps ASCII names
to the disk resident voice files. VEDIT contains a
command string interpreter (CSI) for reacting to user
input. A complete description of VEDIT and other program
commands is given in the user manual.

RECORD

Program RECORD comprises all modules required to enter
audio speech utterances into the system. It contains
modules which: (1) accept audio input and digitize it
into a temporary file; (2) process the file by the
ADPCM algorithm; (3) auto-edit leading and trailing
silence; and (4) associate each utterance with a
dictionary entry and build the disk-based voice file.

l

l. 2. 3

l. 2.4

l. 2. 5

SPEAK

Program H516 comprises all modules required to
generate audio from the voice files. The modules
accept ASCII text from the H516 computer, search
for the disk blocks containing the voiced text,
and decode the voice file into the audio signal
which currently drives a speaker. H516 contains
the routines for parsing the input text, including
insertion of pauses, identification of the best
text match using phrase look-ahead, and proper
interpretation of numbers.

System Subroutines

All programs make extensive use of shared subroutines
which perform specific tasks, such as buffer manage­
ment, pattern matching, register saving, etc. All
subroutine modules of general interest are documented
fully, and those routines unlikely to be frequently
required have a brief description of the routine as
well as its calling parameters. All routines are
identified in the program listings.

Data Base

The dictionary and voice file are stored in a single
disk file: "DIRECT.DVF". The generation and manage­
ment of the data base is described below.

2

2. SOFTWARE

2.1 VEDIT

VEDIT is entered through the global symbol "CSI". Upon
entry the program version number is printed and the system
initialization routine is called. The system initializa­
tion routine opens file DIRECT.DVF if it exists or creates
a new one if it does not. If an error occurs in system
initialization, the program exits, since the program is
unable to proceed without ~roper initialization. If no
error occurs, the main loop is entered.

Command input occurs first in the main loop. A question
mark is printed and type-in is accepted from the console
terminal. The command in.put routine does not return until
either a new character is entered or until an error occurs.
The only error likely to occur is an attempt by the user
to input a command which is more than 255 characters long.

The command entered is now looked up in a table of commands.
The command is matched, character for character , with com­
mand names in the table until the first break character.
Only enough of the command name need be typed to prevent
matching more than one command. When the command is
matched, the command string is also checked for any switch
options to the command. If a switch exists, the switch
character is put in the global variable "SWITCH". Finally,
a pointer to the matching routine is returned.

The routine selected by command lookup is executed. The
remainder of the entered command is passed to the routine
for use as an argument list. The command routine also has

. access to SWITCH and other globals in the program to insure
its proper execution. Upon completion of the routine, the
remainder of the command string not used is ignored and the
disk copy of file DIRECT.DVF is updated if any changes to
temporarily core resident sections have been made.

Errors occurring are of two types. The first can be called
"recoverable". These are such things as user typographiqal
errors or undefined or incorrect arguments. In this case a
message is printed and a carriage return line feed is
printed. The second are errors such as a failure of the
initialization routine. Errors of this type indicate hard­
ware or an RT-11 operating system error. The program it­
self is incapable of handling such errors and so the pro­
gram exits.

The following section contains flow charts of the basic com­
mands callable from the VEDIT command string interpreter.

3

The description of the commands described in the VRS users
manual provides guidelines for following the flow charts.
In addition, there are descriptions of the major subroutines
given at the end of this section. Consulting the program
listings is also helpful.

4

Erro r Returns
Used Which

Are Not Shown
Return To Here

PREER

print
error

VEDIT

SYSINT

initialize
system

TTYOT

print
"? 1f

get
command

CLKUP

command

CRLF
rint CRLF
then do
command

VMBKUP

I error

BUFSET
set fo·r

next
command

5

PR.ERR

print
error

BYE

exit
program

Execute
Selected One

f Following
TALK, INSER
RENAME,
KILL, BYE,
SYNON, LIST
DELETE,
ENTE

error ,- -- .. -
I
I
I
I
I
1
l
I
L--➔

LIST

Decide
rom switch

type of
lookup

LSTCHR
get next
matching

entr y

1error
I

I

LSTFS

RTRN

6

LSTPRT

pr int
entr y

*Note: All erro~
returns not shown
return to ERTRN
directly.

•.

NO

ARCS

RTRN

RTRN

Starts AO Sorvlce
Routine! on Next

P-3<J<" Output 1 8

Spcec:h

7

PB!tlT

Decode And
Output Next

Code Word

Get Ptr.
To Next

CQde Word

RTf
Ce:t Next

Core Buffer
In Chain

IITI

Dl~4bli"'
11/1D

RT!

INSERT

Name

already in l•----~

dictionary

error
ERTRN

-

no

CROIR

Create
entry

RODE
Read
file
info

arg count

= 1

B
8

Needs

arg

C ERTRN)

Dictionary ·~OF
>--_e_rr_o~r~ full or ~

1/0 error

C ERTRN)

. - - -·

(3-----·)

e

9

SYNON

RDDE

Get file
info

Set count

of args

to zero

10

error - - _.,
name not
found or

needs arg

(ERTRN)

RTRN

ENTER

CROUT
Empty

Remainder
Of Line

GCOM

get line
of text

CROUT
CRBKUP

Is Input
Line Feed

No

INSERT
Tiput

dictionary
entry

11

error

error - --

input

error

ERTRN

Return
error
from

insert

ERTRN

No arg

or arg
not in Diet

ERTRN

arg

error - ----

already in i-..------1

dictionary

ERTRN

Rename

DCTBM
Match
first

no

BUFRST
CRDIR
create

dictionary

RTRN

12

es

error - -

ERTRN

dictionary

full

ERTRN

Delete

ARGINT error --

NXTARG error --

E? N? C?

Default

13

-.(,_, __ R_T_R_N __)

-.c ___ R_T_RN __)

0?

Should
Delete?

yes

DELDE

Delete
entry

M?

•• J
error

DELOE

Remove
Synonym

Restore

saved
pointer

yes

no

Save
Pointer
To Name

NFSPTR

Get next
synonym

Save

pointer

NFSPTR

Get next
synonym

no
DELOE

Delete
entry

to free
storage

..

2.2 'RECORD

The record module is structurally identical to VEDIT.
The command langu~ge ·is limited to the following:

LISTEN

SAVE

(for building a temporary file of
digitized speech)

(for encoding and editing the
digitized speech, and cataloguing
utterances on the disk according
to dictionary entries)

No switches or arguments are required.

The flow charts for these commands fo~lows ~

15

Listen

PRGINT

INIT
PROG

Ring Bell

Pause
Start Record

DSKRCD

Record
Till EOF.

Stop A/D

Ring Bell

PRGFIN

Close
Fiie

RETRN

16

error - - init
error

ERTRN

i;:.oi _ Recording
error

ERTRN

- -- --- ----·-- .. ---- -

nitializatio

error

ERROR
RETURN

ADPCM

nitializatio

errors

ERROR
RETURN

File space
.,t"QI' ►

exhausted

' C ERROR)
RETURN

>...:.t.:.:...-► No Empty

AUTORD
AOPCM
WBINS

onv~rt Sampl
and Get

dictionary
entries

ERROR
RETURN

End of
file or

disk error

AUTORD

ADPCM

WBINS

WRCLS
PERMFL

MAKE
PER-1J.\NEN'II

18

EOT
or

Disk 1/0
error

closing
error

ERTRN

2,3 SPEAK ·

The H516 module is flow charted on the following
page. ASCII text is input from the 8516 computer.
The lookup algorithm described separately parses
the text, using look-ahead techniques, and returns
a list of pointers to voice files which are fed to
the playback routine.

The play back routine is identical to the TALK
routine which is used by VEOIT, The appropriate
flow chart can be seen there.

19

SPEAK

Initialize
program

open files, etc.

CBYPBD
Copy File
Pointers
From Disk

PRSLIN

in

20

low Chart For
>---,_lgorithm

ttached

Structurally
,__...,.same As Talk

Command

Phrase Look-ahead Algorithm

This section is devoted to an analysis of the "phrase
look-ahead" function of the H516 program. Several
problem areas will be dealt with. A familiarity with a
standard binary sear ch is assumed.

Consider the dictionary listed in Table 2-1 and the text
string "NEW YORK CITY IS A LARGE PLACE". There are t wo
problems that must be dealt with . First, "NEWP matches
two entries - "NEW" if taken alone or "NEW YORK CITY" if
taken as part of a phrase. "NEW YORK CITY" is the better
match, but if the binary search arrived at "NEW" first,
a match would be detected and the search would terminate
prematurely.

The solution lies in the fact that a phrase which matches
a string will always be alphabetically later in the dic­
tionary than a word or shorter phrase which matches the
same string. Therefore, whenever a match occurs before
the end of the search, (before Log2N tries for a diction­
ary of N entries), the matching entry i s stored. The
match is then treated as a mismatch which is less than
the string input. At the end of the search the most
recently encountered match will be the best match.

The second problem is somewhat more subtle. Consider
again the dictionary in Table 2-1, and the input string
"NEW YORK STATE". The first try with the binary search
would compare the input string with "LASTING" after which
it would try "NEW JERSEY". ·The character where the mis­
match occurs is at "Y" in the input and "J" in Jersey.
This would indicate that the input is greater than the
entry "NEW JERSEY" so the binary search would proceed
to ''NEWARK". A blank is alphabetically less than an
"A", so the binary search would next try "NEW YORK CITY".
This would be its last try. But the "S" in "STATE " mis­
matches the 11C" in "CITY". Therefore, the binary search
would indicate no match even though "NEW" by itself does
match an entry.

The problem occurred at the entry, "NEW JERSEY". The
comparison indicated that the input is greater than the
dictionary entry because "Y" is greater t han "J". But
since this mismatch occurred after a blank was encountered ,
the matching entry will be greater than t he i nput only
if a phrase with at least one blank will be the final
match. If the final match has no imbedded blanks, then
the matching entry will always be less than the entry
where the mismatch occurred after a blank was encountered.

21

The binary search will go in the wrong direction _after a mis­
match if several conditions occur. The first condition is that
the number of blanks encountered before the mismatch occurs is
greater than the number of blanks that will occur in the best
possible match. The second is that the result of the mismatch
indicates that the matching entry is greater than the entry
just compared with the input string, as in comparing "NEW YORK"
with "NEW JERSEY".

The solution involves a "tree search" of the dictionary whenever
no blanks are encountered. When a mismatch is encountered the
binary search proceeds as normal. If, however, one or more
blanks are encountezed in the mismatch and the mismatch directs
the search to proceed in the "greater than" direction, the
point in the search where this occurred is pushed onto the stack
and then the search is permitted to continue in the "greater
than" direction. At the end of the search done in that way, the
location in the search which was pushed on the stack is popped
off and the search proceeds again from that point but in the
"less than" direction. As described in the first problem area,
the searches are allowed to continue even if matches are en­
countered. The best match will be the match containing the
most imbedded blanks.

This can occur any number of times, and several of these de­
cision points can be on the stack at once. Also note that if
one is proceeding from a point at which the mismatch contained
one blank and is moving in the "greater than" direction, the
further mismatches must contain two or more blanks before they
can be saved on the stack. This simplifies the tree search
somewhat ana increases the speed of the search.

A flow chart of the algorithm aids in understanding this opera­
tion. It is helpful to draw a dictionary as a binary tree and
use it to trace the search for various inputs to find the path
followed.

22

-- --- - ·-- - --

~ABLE 2-1. SAMP~E DICTIONARY

DENSE

DENSE AIR

DENS~ FOG

DENSE SMOKE

LAST CHANCE

LAST -ENTRY

LAST FLIGHT

LASTING

M.

N

NEW

NEW JERS-EY

NEW YORK CITY

NEWARK

YORI(

23

Phrase look-ahead

algorithm.

Initialize
pointers
a.nd best

match info.

yes

take

left
branch

no

Return
Best

Match

< entry

pop search
state off

stack

yes

yes

Take
Right
Branch

< entry

yes

No

push search
state onto

stack

error
return.

no match

24

= entry

no

save

best

match.

*Note: Is the number of
imbedded blanks encountered
in the matching process
greater than the number en­
countered in the last match
pushed on the stack?

N

1.
/l

P
a
th

fo

ll
o

w
e
d

th

ro
u

g
h

 d
ic

ti
o

n
a
ry

to

fi

n
d

b

e
s
t

m
a
tc

h

fo

r
in

p
u

t
s
tr

in
g

 o
f

"D
E

N
SE

T

R
A

F
F

IC
"

\ ' ' I)
I.

(D

E
N

SE

FO
G

)

' \ \

Le
ge

nd

~
 l

c

❖

I J C
H

A
N

C
E)

(L

A
ST

F

L
IG

H
T

)

*
S

e
a
rc

h
 s

a
v

e
d

o

n

s
ta

c
k

-
-
-
-
•
 B

a
c
k

-u
p

(s

e
a
rc

h

p

o
p

p
e
d

fr

o
m

s
ta

c
k

)

S
e
a
rc

h
 p

a
th

~
M

a
t
c
h

 f
o

u
n

d

{N
E

W
'JE

R
SE

Y
) {N

E
W

A
R

K
)

(M
)

{N
E

W
)

(N
EW

Y

O
R

K

C
IT

Y
)

(Y
O

R
K

)

3 . SYSTE;M SUBROUTINE

The following section provides an index ·to the system
subroutines. It consists of an index to assembly modules
used by each program and a list of subroutines in the
order they appear in the module listings. Subroutines
which are o·f general interest are provided with a working
description. The combination of this index and the pro­
gram listings provide the documentation needed £or pro­
gram maintenance.

26

3.1 PROGMM ASSEMBLY MODULE NAMES

Program VEOIT

Assembly modules

Program

Assembly modules

VEDCSI

STKBUF

COMBLK

CTAB

DIRPAG

ERRORS

LIST

TALK

INSERT

DELETE

.GARBG

RECORD

RECCSI

STKBUF

LISTEN

ADPCM

CTAB

GLOBAL

Program . H516

Assembly modules H516

Other modules:

STKBUF

LOK516

PLY516

CTAB

SPGLBL

PARAMS

Contains assembly parameters

27

3.2 SUBROUTINE NAMES

Module VEDCSI

Subroutines SYSINT - system initialize

Module

Subroutines

CSI - main program loop

GCOM - get command

CLKUP - command table lookup

CSMTCH - command string match

SWTCHK - legal switch checking routine

FLBLK - flush leading break characters

BRKCH - check for break character

TTYOT

CRLF

OCTIN

- console output

print carriage return line feed

- octal number input

OCTOUT - octal number output

LIS~NM - list a dictionary name

CNFRM - confirm a request for an
operation

AYS - "Are you sure?" command verify

FCE - fatal consistency error

STKBlJF

PUSH - stack push

RTRN - normal subroutine return

ERTRN - subroutine error return

BUFINT - ring buffer initialize

RIN - ring buffer in
LINSET ~ ring buffer limit set

RINC - input with limit set

RBKUP - input pointer backup

CROUT - conditional output

BUFRST - reset conditional output

BUFSET - output set

CRBKUP - conditional backup

ROUT - ring buffer output

28

Module

Subroutines

Module:

Module

Subroutines

COMBLK

KILL - dictionary reinitialize

BYE - program exit

Also contains command table used for
command lookup.

CTAB

contains all tables used by both ADPCM
encode and decode.

DIRPAG

VMINT - "Virtual memory" initialize

RDBYT
WRBYT
RDWRD
WRWRD

word and byte i/o on dictionary
via "virtual memory"

VMNG - virtual me~ory manager

VMBKUP - back up virtual memory or disk

DIRINT - directory initialize

RODE
WROE

RDFSE
WIU'SE

- directory entry read and write

- free storage entry read and write

NFSPTR - get next entry with same file
pointer

CRF?E - create free storage entry

FSPACK - pack contiguous free storage

DELFSE - delete free· storage entry

GUID

CRDIR

CRDCT

DELOE

DCTBM

DLKUP

- generate unique identifier for
file

- create a dictionary entry

- create a text name for a
dictionary entry

delete dictionary entry

- get best match in dictionary

- bin~ry search dictionary lookup

DMTCH - match single dictionary entry

STRMTC - as above best for wild card
option

29

Module

Subroutines

Module

Subroutines

Module

Subroutines

Module

subroutines

--- - - . -

DIRPAG (Continued)

FLMTCH - match entry with full command
string

ARGINT - initialize NXTARG routine

NXTARG - return successive entries in
dictionary which match command
string

Also program global variables.

ERRORS

PRERR -

PRCT -

print error message

print current token in command
Also error messages (ASCII TEXT)

LIST

LIST - program list command

LSTCHK - cheak arg to see if it should
be listed

LSTHDR - print listing header

LSTPRT - print file name

LSTFS - list file are~ free storage

TALK

TALI< -

SPINT -

PBFI~T -

E'ILBUF -

ADSTRT -

PBlNT -

30

program talk con~and

speaking buffer initialize

buffer set up

maintain speaking buffers

start of A/D converter (used as
clock)

interrupt service and ADPCM
decode

-- - - - ---- - - ------ - ---- -

Module

Subroutines

Module

Subroutines

Module

Subroutines

Module

Subroutines

Module

Module

Subroutines

DfilLETiil

DELETE - program DELETE command

INSERT

INSERT
SYNON
RENAME
ENTER

GARBG

- program commands

GARBG - program command for free
storage "garbage collections"

RECCSI

CSI

GCOM

- program main loop

- get command

CLKUP - command lookup

CSMTCH - command string match

FLBLK - flush blanks

BRKCH
TTYOT

CRLF

PRERR

PRCT

AYS

FCE

GLOBAL

- check for break characters

- console output

print carriage return line feed

- print error message

- print current token

- "Are you sure?"

- fatal consistency error

Contains all program giobal variables

LISTEN

LISTEN - program LISTEN command

PRGINT - initialize

BFRSTP - buffer set up

DSKRCD - disk recording routine

ADINT - program interrupt handler

PRGFIN - program close

GAIN

31

- program command to set
GAIN on A/D

Module

Subroutines

ADPCM

ADPST -

SAVE -

WOPACK -

DOPEN -

FRALOC -

WRINT
RDINT

WRC.LS -

WRTWAT
RE'OWAT
AUTORD

ADPCM -
WBINS -

FBSQ -

PERMFL -
DCLOSE -
DEL'.FSE -

NSFPTR -

THRESH -

32

initialize
program -·main loop

code word packing

dictionary open command
free storage allocation

disk word at a time i/o
initialize

close write channel

word at a time disk i/o

ADPCM word encode
insl;'rt sample ih energy "window"

com~ute (C(i)-7.5) 2

make a permanent speech file
close dictionary

delet·e free storage entry

get next file with same file
pointer
program threshold modification

· -- ·--- .

Module

Subroutine

Module

Subroutines

- --
- program main loop

H516

H516

GLIN - input time of ASCII text

CPYLUD copy in dictionary for lookup

CPYPBD - copy in dictionary for speaking

ALCCOR - allocate free core

TTYLOT - console output

CRLF - carriage return - line feed

PRERR - print error

PRCT - print current token

BRKCH - check for breaks

LOK516

PRSLIN - look up text in a single line

PAUSE - pause handler for punctuation

AUTOWR - write pointer into ring buffer

NUMCHK - check if text string is a numeral

SINGLE - check if token is a single
character

PRSNUM - parse up a numeral

PRS3DG - parse up 3 digits of a numeral

PRSWRD - spell a word

PBLKUP - phrase look ahead binary search

PBMTCH - match single dictionary entry

WRINT
RDINT - initialize word at a time i/o

WRCLS - close write channel

WRWAT - write disk word at a time

RDWAT - read disk word at a time

AUTORD - auto read of words

33

Module

Subroutines

Module

Subroutines

PLYS16

PLAYBK - main loop
SPINT - speaking initialize

PBFINT - buffer initialize
FILBUF keep buffers full

ADSTRT - start A/D converter (clock)
PBINT - interrupt handler and ADPCM

deoode

also variables and tables

SPGLBL

Speak program global variables

34 -----

3,3 SUBROU~INE DESCRIPTION

Macro: .CAL

Function: .CAtl subroutine. Provides uniform format
forcalling subroutines which have error
return.

Other Operations: .CAL sub, error.

Expands into:

JSR R7r sub

error

"sub" is th~ name of the subroutine to be
called,

"etror" is th.e address of the error handler
cot\cerned-. with an error return from the sub.­
routine.

Name: PUSH

Function: PUSH all registers on stack, also position
RS .

Cal led: JS.R RS , PUSH

Arguments: None.

Other Operations: upon return from PUSH,_ user stack looks
like this:

Save registers

35

Return to cailer ~(RS)

RS
R4
R3
R2
Rl
RO ~(R6)

Name:

Function:

Called:

Arguments:

RTRN

RETURN from subroutine; restores registers
from stack and makes a return, skipping
error return location in calling routine.

JMP RTRN

R6 need not point to stack.

RS, however, must point as shown in "PUSH"
description.

Other Operations: Stack before call after

RTRN ADD ~{RS)

SRS
SR4
SR3
SR2
SRl
SR,0

R6 points
anywhere
beyond SR~

Name: ERTRN

Popped
off

Stack

RTRN ADO ~(R6)

SRS
SR4
SR3

(R5)=SR5
(R4) = SR4
(R3) = SR3
(R2) = SR2
(Rl) = SRl
(R,0) = SR~

(PC) = RTRN ADD + 2

Function: Error ReTuRN. Return from subroutine after
restoring registers. Return made by in­
directing through error address pointed to
by return address in stack.

Called : JMP ERTRN

Arguments: Exactly as "RTRN".

Other Operations: Exactly as RTRN except:

(PC) :::: (RTRNADD)

36

RING BUFFER PACKAGE

The ring buffer package for the VRS is a versatile system of
routines for the buffering of data between two programs.
Features include those of a normal ring buffer as well as the
ability to examine the contents of the buffer without actually
removing the item from the buffer, as would be desirable for
comparisons at an input stream with many text strings. An
additional feature is a limit pointer useful for line-at-a­
time editing. The limit pointer can be set to the point where
an input line ends. While this line is being processed, a new
line is composed. The buffer can only be processed up to the
limit pointer, even though the input pointer is beyond that
point. This prevents processing on a partially composed line.

Consulting Figure 3-1, the function of each of the pointers
is as follows:

IN - this is the input pointer to the buffer. As data is
added, the pointer moves toward out (clockwise). In­
valid data can be removed by "backing up" (counter clock­
wise). The limit on the clockwise direction, is the OUT
pointer. At that point the buffer is full. The back up
limit is the LIN pointer.

LIN - this is the input and output limit pointer. It is
usually pointed to the last new line character in the
input stream. Once set, the input pointer cannot be
backed up beyond it, nor can the output pointer move
forward past it; that is, the output pointer cannot
remove data beyond the limit pointer. LIN can only
move clockwise. It is set to the position of IN by a
subroutine call, and remains stationary until the next
call regardless of the motion of IN or OUT.

OUT - the ring buffer output pointer. Removal of data is
"final'' in the sense that this pointer cannot be backed
up. It sets the limit up to which IN can insert data.
It is either moved one character at a time, or moved by
a subroutine call to the position of COUT.

COUT - this pointer allows examination of any data between
the LIN and the OUT pointers in the area shown on
Figure 3-1. It can move one character at a time in either
direction or be set to the value at OUT.

37

Ring Buffer Package.

COUT

OUT

ring buffer

- motion limit for OUT

~ motion limit for COUT

IN

' I motion limit for IN

FIGURE 3-1. POINTER SUMMARY ARROWS INDICATE DIRECTION OF MOTION,

38

--- - - - . ---- - · ---
Name: :8UFINT

Functions : BUFfer INiTialize. set up a ring buffer
Iil core-. - - ·

Called: .CAL BUFINT, error.

Inputs: RJ pointer to 26210 byte block of storage
to be used as a ring buffer. ·

Outputs: None.

Othei Operations: 25610 byte circular buffer is initialized
in core. 6 byte header is provided as
follows:

Name

LIN

Function

Line Limit. Sets
limit beyond which
output pointers
cannot go.

Initial
Value

I f4

l IN Input pointe~.
Points to next free

.: byte in buffer.

2 CFUL Conditional full-

3 COUT

4 FUL

39

ness. Distance
from conditional
output pointer to
output pointer.

conditional output f4
pointer. Free-
flowing pointer to
examine any charac-
ter between LIN and
OUT without removing
from buffer.

Actual fullness. f4
Distance f .rom output
pointer to input.

Routines called:

Errors:

Name:

Function:

Called:

5

None.

None.

RIN

Name

OUT

Initial
Function Value

output pointer. ~
Final output pointer
for characters.

Ring buffer INput. Places input character
in ring buffer.

.CAL RIN, error.

Args: Two.

Inputs : R~ - pointer to ring buffer
Rl - character to be inserted right justi­
fied.

Outputs: None.

Other Operations: Fullness count and input pointer incre­
mented after character inserted. (Also
conditional fullness updated.)

Routines called: None.

Errors:' Buffer full,

40

Name:

Function:

Called:

LINSET

LIN pointer SET. Limit pointe r set to
current value at input pointer.

.CAL LINSET, error.

Inputs: R0 - pointer to ring buffer.

Outputs: None .

Other Operations: Contents of IN pointer placed in LIN pointer .

Routines Called: None.

Errors: None.

Name:

Function:

Called:

Inputs:

Outputs:

Results:

Routines Called:

Errors:

RINC

Ring buffer Input with No Check. Equivalent
to RIN followed by LINSET. - Used when data
need not be checked before definitely entering
it.

.CAL RINC, error.

R0 - pointer to ring buffer.

Rl - character to be inserted.

None .

If error - none.

If no error, character placed i n buffer, con­
ditional fullness and fullness updated, limit
pointer (LIN) and input pointer both set to
next character.

None.

Buffer already full.

41

Name: RBKUP

Function: Ring buffer BacKUP. Removes last cha.racter
placed in ring buffer.

Called: .CAL RBKUP, error.

Args: Two.

Inputs: ~ - pointer to ring buffer used.

Outputs: SRl ~ if no error, returns character re-
moved - if error, returns unchanged.

Other Operations: Pointer positions moved.

Routines Called: None.

Errors: Pointer already backed up to LIN limit
pointer.

Name:

Function:

Called: ·

Args:

Inputs:

Outputs

CROUT

conditional Ring buffer OUTput. Remove
next.character from buffer"°using the condi­
tiona~ ring buffer pointer.

.CAL CROUT, error.

Two.

R~ - pointer to ring buffer.

SRl - character removed from buffer, If
error, no change.

Other Operations: Conditional pointer incremented, condi­
tional fullness decremented if no error,
otherwise no chqnge.

Routines Called: None.

Errors: Buffer "empty".

Conditional output pointer COUT has caught
up to limit pointer LIN.

42

Name:

Function:

Called:

BUFRST

BUFfer ReSeT. Resets conditional output
and conditional fullness to value of output
and fullness.

.CAL BUFRST, error.

Args: None.

Other Operations : Covered in function.

Errors: None.

Name:

Function:

Called:

BUFSET

BUFfer SET. Moves output and fullness up
to conditional output and conditional
fullness.

.CAL BUFSET, error .

Args: None.

Other Operations: covered in function.

Errors: None.

43

Name: CRBKUP

Function: condition Ring Buffer output BacKUP,
·'sack up to - previous character. . --

Cal led: .CAL RBKUP, error.

Args: Two.

Inputs: R~ - pointer to ring buffer.

Outputs: SRl - character removed from buffer.
If error, SRl is unchanged.

Routines Called: None.

Errors: Attempt to back up beyond output pointer.

Other Operations: Conditional fullness incremented if no
error. COOT backed up one character.

Name: ROUT

Function: ~ing buffer OUTput. Removes next character
pointed to by 6atput pointer.

Called: .C~L ROUT, error.

Args. Two,.

Inputs: R~ - pointer to ring buffer.

Outputs: Rl - no error: Character removed.
Rl - error: Unchanged.

Other Operations: Error - none.
No error - output incremented, fullness
decremented.

Routines Called: None.

Errors: Attempt to move output pointer past con­
ditional output pointer.

44
- -~- - --

Name:

Function:

Called:

VMINT

Virtual Memory INiTialize, Sets up core
buffers for diskto permit read and write
of disk resident dictionary through a virtual
memory system.

.CAL VMINT, error.

Arguments: None.

Other Operations: core Buffers initialized to contain core
keys of first five pages (256 words each)
of the pictionary. Core buffers brought
in by an LRU algorithm, so appropriate
variables for LRU are initialized,

Routines ca~ied: None.
RT-11 monitor calls .READW

Errors: RT-11 errors only• dist read.
Error meseage pointer returned in ERPNTR.

45

Name :

Function:

Called:

Arguments :

RDBYT - read one byte
RDWRD - read one word
WRBYT - write one byte
WRWRD - -write one -wo·rd

Basic inpu·t..,.output for dictionary.

.C.AL name, error.

R2 - points :to,word or byte on disk, if
i't is a word, i't sh-ould ·poi:nt to an even
bvt:e bouridary.

·Rl. - argamen·.t to be r~d or writ ten.
Byte ar9umen:ts :shl!>.u1d' be r igh.t j -usti f .ied •
on return ·fr,om re.ad byte, top byte cleared.

Other Operations: LRU vati.ables updated. If desired, data
not in c0re at ·tim~ -of oall :Ls swapped in.

Routines called: VMNG

Rrrors: R'l'-J.l errors .•
Error me·ssage pointer returned in ERPNTR.

46

Name: VMBRUP

Function : Virtual Memory BacK UP . Updates disk
resident- copy of dictionary by swapping
out pages in core buffers.

Called: .CAL VMBKUP, error.

Arguments: None.

Other Operations: None othe1':' than described in function·.

Routines called :

Errors:

RT-11 monitor calls .WRITW

RT-11 errors.
Error message pointer returned.

47

Name: DIRINT

Function: DIRectory !B_iTialize.

Called: .CAL DIRINT, error.

Arguments: None.

Other Operations: All variables in head~r at dictionary set
t;o indicate empty dictionary.

Routines Called: CRFSE.

Errors : Error return from CRFSE returned direct~y.

48

Name:

- __ .. --·-- . -

RDFSE - Read free storage entry.

WRFSE - Write free storage entry.

Function: i/o on 2-w~rd free storage info~mation.

Called: .CAL Name, error.

Arguments: R2 - byt~ --:_pointer to first byte of t\v'o­
word descriptor.
CallerB etaok at ca.11 t.i,me:

(R6) - address of block of free storage.
2(R6) - size of free storage in number

o·f ·blocks.

Other OperatiQns: Dictionar-y· lfritten via WRWRD.

Routines called: RDWRD

WRWRD

Errors: Returned c;lirectly from above routines,

49

Name: RODE - read directory entr~.

WRDE - wri'te directory entry.

Function: Read or write a three-word file information
block from dictionary.

Called : .CAL name, error.

Arguments: R2 - pointer -to fitst byte at ·entry to be
accessed. (Offset from beginning of dic­
tionary.) Callers stack as follows (at
call.time):

(R6) - pointer to text name of file.
2(R6) - file size information.

"4{R6) - pointer to fii~t bloc~-0f file.

Other Operations: On WRDE, dictionary;~ritten through virtual
memory.

Routines called: WRWRD

RDWRD

Errors: Returned directly from above calls.

50

.. ..

Name:

Function:

Called:

Argum43nts:

Other Operations:

Routines called:

Errors :

·-- - - - -
CRFSE

Create a two-word entry in the table of
free storage space.

.CAL CR!'SE, error.

Stack as follows:
(R6) - ac)dress of disk. area to be returned

to free storage.· ·
2(R6) - size in blocks -of disk area.

Free storag~ area sorted by, address. Entries
moved to accommodate new entry. If ne~
entry is contiguous with existing entry,
the entries. ~re merged into one entry.
Pointers to table of free storage space are
updated.

RDFSE

WRFSE

FSPACK

Free storage space full. Error point.er
returned in :ERPNTR.

Other errors directly retµrned from called
.routines. .

51

Name: DELFSE

Function: Delete FREE storage table entry.

Called: .CAL DELFSE, error.

Arguments : R2 pointer to entry to be removed.

Other Operations: Table of free storage updated by moving
, remaining entries down over deleted entry
and by updating pointers to table.

Routi"ea Called: RDFSE

WRFSE

Errors:

Name:

Function:

Called:

Arguments :

Returned directly from routines called.

GUID

Generate Unique IDentif ier ·use.d in fil~
creation.- -

.CAL GUID, error.

R3 - high order byte of unique identifier
returned in low order byte of R3. High
order byte of R3 cleared.

R4 - low order two bytes of uid.

Other Operation$: Current uid in file header ~pdated.

Errors: None.

52 --- --- -- .. -------

r

Name:

Function:

Called:

Arguments:

CRDIR

CReate DictionaRy entry. Takes text argu­
ment andcreates a new dictionary entry.
File block size is initially zero. Synonyms
use three byte unique identifier copied
into last block size, and file pointer
fields of entry.

.CAL CRDIR, error.

Ri - poin'.ter ring buffer containing text
name foL new entry. First call to CROUT
should return first character for name.
Name used until first non-blank break
character. ·

R2 - insertion point for new entry.

Other Operations: Text entry inserted after previous end of
text area. (tile name area.) New three-word
entry inserted in dictionary. Pointers
to dictionary updated.

Routines Called: CRDCT

RDDE

WROE

GUID

Errors: Dictionary full (returned in ERPNTR) or
else error returned from routines called.

53

Name:

Function:

Called:

Arguments:

CRPCT

Inserts text: name into file name area of
dictionary. Returns pointer to newly
created name •

• CAL CRDCT, error.

R, - pointer to ring buffer containing text
name described in CRDIR.

Rl - returns pointer to location. Text name
was inserted.

Other Operations: File name area and appropriate pointer to
that area are updated.

Routines Called: CROUT

BRI<CH

WRBYT

Errors: Dictionary full - returned in ERPNTR.
Or else error returned from routines called.

54

·-

Name:

Function:

Called :

Argume·n ts :

Other Operations:

Routines Called::

Errors:

- - - - - ·· ·--· .. - .
NFSPTR

Find next entry with same file pointer. Used
to locate synonyms to a file. When called,
look for synonym which alphabetically follows
after entry provided as argument. If search
runs past end of dictionary, restart at the
beginning of the dictionary. If .an entry has
no synon~s, return original entry.

.CAL NSFP'rR, error.

On entry R2 is pointer to three-wotd entry
block in diction~ry;
on exit R2 contains pointer to three-word
block of next synonym.

Hone.

RODE,.

Returned cUrectly from RDDE •

55

Name :

Function:

DELOE

Delete dictionary entry - remove three­
word block associated with entry and the
text entry n~ ••

Called: .CAL DELDE, error.

Arguments: R2 - pointer to three-word block of dic­
tionary entry to be remov~d.

Other Operations: Text entry removed from ftle name area.
Any names in higher core than removed name
are moved down to compress file name area.
The same is dofie for the information block
area. All pointers are updated. LCHECK
is also updated if entry .it points to is
moved by delete.

Routines Calle~: RDDE

RDBYT

WRBYT

RDWRD

WRWRD

Errors: Returned directly from routines called.

56

r

.,

Name:

Function:

Called:

Arguments:

.. -- - - ... - -·- ,., ___ .. - --.
DCTBM

Find best match in dictionary. Determines
if string provided provides a match with an
entry in the dictionary up until the first
non-blank break character.

.CAL DCTBM, error.

Rj - points to ring buffer with string in
it. If match output pointer points to be­
ginning of string with leading blanks flushed,
conditional output pointer points to break
character terminating string. If no match,
both output pointers point to beginning of
string with leading blanks flushed.

R2 - pointer to match. If match occurs,
R2 is pointed to entry in dictionary which
matches the string. If no match, R2 points
to place in dictionary where new entry would
be inserted if input string were used for
test name. If end of text encountered in
input string before any other text encountered,
R2 is set to all ones.

Other Operations: None.

Routines Called: FLBLK

DLKUP

CRBKUP

CROUT

BRKCH

BUFRST

Errors: Text string does not match any entries or
end of text in input string.

ERPNTR unaffected by DCTBM. If set by
routines called, its value is returned
unchanged.

57

Name:

Function:

Called:

Arguments:

DLKUP

Dictionary LooKUP. Performs a binary search
on dictionary to find entry which matches
input string.

·.CAL DLKUP, error.

R~ - points to text string in ring buffer.
Both output pointers must point to the
first character of the string. If no match
is found, output pointers are unchanged. If
match occurs, conditional output pointer
points to break character at end of match.

R2 - if match occurs in course of search,
R2 points to matching entry. If no match,
R2 points to insertion point found for string.
If end of text, R2 is set to all ones.

R3 - if match found, R3 points to insertion
pofnt for string. This is done because a
string which matches an entry may continue
beyond the match. For example, "NEW YORK
CITY" would match "NEW YORK" in the diction­
ary but could still be inserted as a new entry.

Other Operations: None.

Routines Called: BUFRST

DMTCH

Errors: No match in dictionary or end of text in ring
buffer.

58
. -- - -·

4. DATA BASE

The File System for the VRS was designed to meet three
crite ria:

a. Speed - The File System must be capable of a data
rate of 7.5 disk reads per second.

b. Compact Dictionary - The File System eventually
must maintain a full dictionary of 4000 entries. To
permit file lookup to proceed at maximum speed the
dictionary must be core resident. The amount of in­
formation associated with each dictionary entry must
be minimized in order to keep a 4000 entry dictionary
to manageable size.

c. Editing Flexibility - The dictionary must be easily
modifiable by the sy~tern programs. The user should not
be subjected to constraints due to limitations in the
file structure.

In addition to the above criteria, the dictionary format
must permit phrase look-ahead .

In general, these criteria conflict. Speed and editing
flexibility always require additional information, which
implies additional space. The design chosen provides .
maximum speed in operation but permits the .desired editing
capabilities through software which calculates the required
pointers, rather than storing them in the dictionary.

File System Description

The VRS file system is divided into five major storage
areas. These areas (illustrated in Figure 1-2) are:

a. Header Block - This area contains a 34g byte de­
scriptor for the file system. This includes an 8 byte
name block and information concerning the size of the
remaining 4 areas.

b. File Name Area - The text names for the various
dictionary entries are stored in this area. As the names
can be of any length, no fixed size is set for an entry.
Instead, each name is followed by a zero byte.

c. File Description Area - The size and location of
each dictionary entry is stored in this area.

59

:.m. synony,
flag

FDA

pointer to name

I size in ,last block
--0 blocks~ size 137 8

pointer to file

l J
' pointer to
!

name ~

I 1 5s 137a

I

,pointer to file -
I

in file descriptor
area

FNA t
E N

blank w-
0 y
K R

C blank

' DVF
T- I ' 1 by te V ~

'

~
y N

zero C
in file name
area

-

last block unuse d Wff~ after word 1378

FlGURS 4 ... l . SAMPLE ll'l-Lm S'rl(UC.1'0Rl ClfflA!I\Er,(FOR TliE F·t:1;·1
NAMlil "NEW YO!Ut CITY" AND :t'rs ABBM\t'.l'MIC>M• (sltttO.tlyift) "NY-C"

} l

} 2

} 3

} 4

} 5

d. Free Storage Description Area - Unused disk storage
is described in this area.

e. Digitized Voice File Area - Contains the encoded
speech.

These areas are all on disk in the layout shown in Figure 4-2.
The descriptor areas are copied into core memory as needed by
the particular program using the file system. (For example
see flowchart for "SPEAK" in Section 2.)

To visualize the functioning of these various areas it is best
to examine a typical dictionary entry (Figure 1-3}. The entry
shown is an example of how the encoded utterance "New York
City" might be accessed by that name as well as by the abbre­
viation "NYC". The files are accessed first through the file
descriptor area. This area consists of a number of three­
word blocks which appear in detail in the example. Most of
the important capabilities are provided by the information in
these blocks.

The first word points to the file name, the second contains
the file status and size information, and the third points to
the disk location. Alphabetic sorting is accomplished by
moving these descriptor blocks, rather than directly moving
the variable-length entries in the file name area .

The file name can be of arbitrary length, contain embedded
blanks, and must be terminated by a zero byte. New names are
added to the end of the name area, while the corresponding
three-word block is inserted in the correct position in the
block area as determined b y the sort.

The file status and size (second word of descriptor block)
contains the following information: The file size (in 256
word blocks} is contained in the low order 7 bits of the high
order byte. The number of words actually used in the last
block is contained in the low order byte. The high order bit
of the word is used for abbreviations. When a dictionary
entry is first created, the high order bit, called a "synonym
flag" is left zero. If an entry is being created as an ab­
breviation for an already existing entry, the remainder of
the second and third words are copies from the original entry.
During editing, an entry's synonyms are found by comparing
the file pointer and size words for a match with other dic­
tionary entries. Note that an abbreviation en~ry is identi­
cal in every respect to other entries except for the flag.
When an empty file is created, a three byte "unique identi­
fier" maintained in the file header is copied into the file
pointer and size of the last block portions of the dictionary
entry. This provides a means of distinguishing synonyms be­
fore a file is created. When a file is deleted , the block
size and the file pointer are copies into the free storage
area to give information about available space in the file
storage area.

61

180 Copies

l

1
- ,,, ,'\ '·- ,., \ ,
'·•,\' \ \',\• , \ •',
,\ \ . \\ ,,·,\ \. . \ . \ \ \ \ ,'

'-.·

,1

-h-,-.......--r."<"'""--,----!)
·1
.I

• I

'

Header Block

FNA (F1 le name area)

Free area for FNA

FHe descriptor area

Free space for FDA, FSDA

~ Free storage descriptor area

J

Voice file area

FIGURE 4-2 .. FILE SYSTEM PARTITION

•.-~-- - --~ -
' 62

- -----------·· ... ,_ -_ _:____.... - - ------
--

